Abstract
Live imaging provides the ability to continuously track dynamic cellular and developmental processes in real time. Drosophila larval imaginal discs have been used to study many biological processes, such as cell proliferation, differentiation, growth, migration, apoptosis, competition, cell-cell signaling, and compartmental boundary formation. However, methods for the long-term ex vivo culture and live imaging of the imaginal discs have not been satisfactory, despite many efforts. Recently, we developed a method for the long-term ex vivo culture and live imaging of imaginal discs for up to 18 h. In addition to using a high insulin concentration in the culture medium, a low-melting agarose was also used to embed the disc to prevent it from drifting during the imaging period. This report uses the eye-antennal discs as an example. Photoreceptor R3/4-specific mδ0.5-Ga4 expression was followed to demonstrate that photoreceptor differentiation and ommatidial rotation can be observed during a 10 h live imaging period. This is a detailed protocol describing this simple method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.