Abstract
Lateral roots comprise the majority of the branching root system and are important for acquiring nutrients and water from soil in addition to providing anchorage. Lateral roots develop post-embryonically from existing root parts and originate from a subset of specified pericycle cells (lateral root founder cells) located deep inside roots. Small numbers of these specified pericycle cells undergo several rounds of cell division to create a dome-shaped primordium, which eventually organizes a meristem, an essential region for plant growth with active cell division, and emerges from its parental root as a lateral root. Observing cellular and molecular processes for an extended time at various scales are crucial for understanding biological processes during organogenesis. Lateral root formation is an example of the successful application of live-cell imaging approaches to understand various aspects of developmental events in plants, including cell fate determination, cell proliferation, cell-to-cell interaction and cell wall modification. Here I review the recent progress in understanding the molecular mechanisms of lateral root formation and the contribution of live-cell imaging approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.