Abstract

Reef-building (or hermatypic) corals live in mutualistic symbiosis with the dinoflagellates Symbiodinium spp. (Alveolata, Dinophyceae, Gymnodiniales), and contribute to the accretion of coral reefs. Due to the difficulty in culturing them in laboratories, these ecologically important cnidarians have not been characterized extensively in physiological, biochemical, molecular and toxicological experiments. The present study was conducted to develop a model symbiosis system for long-term experimental analyses of a symbiotic coral. Aposymbiotic (symbiont-free) juveniles of the hermatypic coral Acropora tenuis were infected with three Symbiodinium strains, and the resulting symbiotic corals were examined for growth and maintenance of the symbiosis for approx. three months. Of the tested Symbiodinium cell lines, CCMP2467 (clade A1) inhabited the host the most densely, and the population in hospite did not decline over the period of three months in laboratory culture. The CCMP2467-inhabited juveniles outgrew the populations infected with the other two strains and aposymbiotic specimens. The A. tenuis juveniles in symbiosis with CCMP2467 cells were used in eco-toxicological tests to study long-term effects of two commonly used biocides (tributyltin-chloride and diuron). Delay in growth was observed after exposing the symbiotic juveniles to the two chemicals for approx. 50 days at the nominal concentrations of 0.4 and 1 μg/L, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.