Abstract
The discharge of treated wastewater into receiving waters by wastewater treatment plants (WWTPs) is considered as one of the main pathways for microplastics (MPs) to enter the environment. To gain a better understanding of the temporal variability of MPs in WWTP effluents, this study investigated the concentration and composition (size, shape and polymer type) of MPs in the effluent of a German WWTP over the course of one month. 24-hour mixed samples were collected daily by a custom built automated sampling unit for MPs. Particles and fibers ≥11 μm were analyzed using Fourier transform infrared microspectroscopy. The MP concentration showed large daily fluctuations and ranged between 9.64 103 m−3 and 8.44 104 m−3 MPs over the study period. However, there was no significant correlation between the MP concentration and the precipitation or discharge from the WWTP. In contrast to the MP concentration, the MP composition in terms of size and shape was consistent over the study period. There were strong correlations between the time series of the polymer types polypropylene, polyethylene, polystyrene, polyester, ethylene-vinyl-acetate, cellulose artificially modified as well as the polymer cluster acrylates/polyurethanes/varnish. The time series of polyamide showed no significant correlation with the time series of any other polymer type. This study established a one month long high-resolution time series of MP concentration and composition, and thus provides a valuable basis for future research on the temporal variability of MP inputs into the environment from WWTP effluents.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.