Abstract
Metal contamination poses serious biotoxicity and bioaccumulation issues, affecting both abiotic conditions and biological activity in ecosystem trophic levels, especially sediments. The MetalEurop foundry released metals directly into the French river “la Deûle” during a century, contaminating sediments with a 30-fold increase compared to upstream unpolluted areas (Férin, Sensée canal). Previous metaproteogenomic work revealed phylogenetically analogous, but functionally different microbial communities between the two locations. However, their potential activity status in situ remains unknown. The present study respectively compares the structures of both total and active fractions of sediment prokaryotic microbiomes by coupling DNA and RNA-based sequencing approaches at the polluted MetalEurop site and its upstream control. We applied the innovative ecological concept of Functional Response Groups (FRGs) to decipher the adaptive tolerance range of the communities through characterization of microbial lifestyles and strategists. The complementing use of DNA and RNA sequencing revealed indications that metals selected for mechanisms such as microbial facilitation via “public-good” providing bacteria, Horizontal Gene Transfer (HGT) and community coalescence, overall resulting in an unexpected higher microbial diversity at the polluted site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.