Abstract
Bone loss and fractures may call for the use of bone substituting materials, such as calcium phosphate cements (CPCs). CPCs can be degradable, and, to determine their limitations in terms of applications, their mechanical as well as chemical properties need to be evaluated over longer periods of time, under physiological conditions. However, there is lack of data on how the in vitro degradation affects high-strength brushite CPCs over longer periods of time, that is, longer than it takes for a bone fracture to heal. This study aimed at evaluating the long-term in vitro degradation properties of a high-strength brushite CPC in three different solutions: water, phosphate buffered saline, and a serum solution. Microcomputed tomography was used to evaluate the degradation nondestructively, complemented with gravimetric analysis. The compressive strength, chemical composition, and microstructure were also evaluated. Major changes from 10 weeks onwards were seen, in terms of formation of a porous outer layer of octacalcium phosphate on the specimens with a concomitant change in phase composition, increased porosity, decrease in object volume, and mechanical properties. This study illustrates the importance of long-term evaluation of similar cement compositions to be able to predict the material's physical changes over a relevant time frame.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.