Abstract

Nano zero-valent iron (NZVI) is commonly used in industrial wastewater treatment. However, its long-term impact mechanisms of metabolization in anaerobic systems are not well understood. This study investigated the effects of long-term and continuous addition of NZVI on methanogenic activity, microbial community, and transcription activity. The results demonstrated that low levels of NZVI (1000 mg/L) induced inhibition of methanogenesis after 80 days, while high levels of NZVI (5000 mg/L) immediately led to a sharp decrease of cumulative methane production and chemical oxygen demand removal, which arrived at a steady state (14.4 % of control and 17 %) after 30 days. NZVI adversely affected cell viability, adenosine triphosphate production, and fatty acid evolution of cell membranes played a crucial role in resisting chronic NZVI toxicity. Moreover, high NZVI levels hindered the transcription of key enzymes CoM and mcrA, while low NZVI levels maintained its high CoM and mcrA activity, but down-regulated the transcription of cdh and hdr. Besides, amino-utilizing bacteria was reduced under the high NZVI concentration, while low NZVI changed dominant genus with potential protein hydrolysis function from Candidatus Cloacamonas to Sedimentibacter. These results provide a guideline for proper NZVI utilization in wastewater treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.