Abstract
Hazardous wastes disposed of in engineered landfills interact with rainwater, generate harmful leachate and may contaminate groundwater. To minimize this, a suitable multi-layered cover system (MLCS) is constructed over the buried waste. Field assessment of complex moisture dynamics in unsaturated MLCS and its long-term hydraulic efficiency has not been investigated in detail for extremely humid conditions (annual rainfall >1000 mm). Therefore, the overarching purpose of this study was to investigate the long-term hydraulic performance of a three-layered hydraulic barrier cover system under humid Indian conditions. The field cover setup was exposed to natural weather condition in the Northeast Indian state of Assam, for 800 days. The MLCS was instrumented to measure continuous variation of volumetric water content and matric suction as function of time and depth. The field measurements were used to determine the appropriate input hydraulic parameters and evapotranspiration model that can be used for numerical modeling. The results showed that simulation using drying van Genuchten soil-water characteristic curve parameters and Penman-Monteith evapotranspiration model matched the field observations. Events of the highest precipitation and extreme drought (cause for desiccation) did not lead to percolation in the drainage layer (60 cm) and barrier layer (100 cm). Numerical analyses performed for 87 years by considering the climate data of two different humid locations (Eastern and Western part) of India revealed that the progressive saturation of barrier layer occurred within 18 to 20 years. However, when geosynthetic clay liner was incorporated as additional barrier material, the saturation time increased by two-fold (42 to 44 years).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.