Abstract

Cutaneous sensation is vital to controlling our hands and upper limbs. It helps close the motor control loop by informing adjustments of grasping forces during object manipulations and provides much of the information the brain requires to perceive our limbs as a part of our bodies. This sensory information is absent to upper-limb prosthesis users. Although robotic prostheses are becoming increasingly sophisticated, the absence of feedback imposes a reliance on open-loop control and limits the functional potential as an integrated part of the body. Experimental systems to restore physiologically relevant sensory information to prosthesis users are beginning to emerge. However, the impact of their long-term use on functional abilities, body image, and neural adaptation processes remains unclear. Understanding these effects is essential to transition sensate prostheses from sophisticated assistive tools to integrated replacement limbs. We recruited three participants with high-level upper-limb amputation who previously received targeted reinnervation surgery. Each participant was fit with a neural-machine-interface prosthesis that allowed participants to operate their device by thinking about moving their missing limb. Additionally, we fit a sensory feedback system that allowed participants to experience touch to the prosthesis as touch on their missing limb. All three participants performed a long-term take-home trial. Two participants used their neural-machine-interface systems with touch feedback and one control participant used his prescribed, insensate prosthesis. A series of functional outcome metrics and psychophysical evaluations were performed using sensate neural-machine-interface prostheses before and after the take-home period to capture changes in functional abilities, limb embodiment, and neural adaptation. Our results demonstrated that the relationship between users and sensate neural-machine-interface prostheses is dynamic and changes with long-term use. The presence of touch sensation had a near-immediate impact on how the users operated their prostheses. In the multiple independent measures of users’ functional abilities employed, we observed a spectrum of performance changes following long-term use. Furthermore, after the take-home period, participants more appropriately integrated their prostheses into their body images and psychophysical tests provided strong evidence that neural and cortical adaptation occurred.

Highlights

  • The human hand is extremely versatile, capable of performing tasks with remarkable variations in the required dexterity, power, and precision of grasps

  • These results suggest that the restoration of touch sensation can provide a near-immediate impact on operation of a prosthesis, long-term use may lead to further functional improvements, more appropriate integration of artificial limbs as a part of the body, and adaptation of higherlevel neural-cortical systems

  • Multiple strong thumb and index finger touch percepts were available for SD, so we identified locations where reported sensation was most congruent to sensor locations on the prosthesis

Read more

Summary

Introduction

The human hand is extremely versatile, capable of performing tasks with remarkable variations in the required dexterity, power, and precision of grasps. These range from tasks as delicate as microsurgeries to those as demanding as rock climbing. Cutaneous sensation is vital to controlling our hands and upper limbs. In nearly every activity performed with our hands, cutaneous sensation shapes how we achieve that task. It closes the motor control loop by informing the real-time adjustments of grasping forces and responses to perturbations during object manipulations (Johansson, 1996). Cutaneous sensation plays a critical role beyond limb control by providing much of the necessary information the brain requires to perceive our limbs as a part of our bodies (embodiment) (Botvinick and Cohen, 1998), which helps us distinguish ourselves as separate from the world around us

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call