Abstract
Long-term consumption of a Western diet is a major cause of type 2 diabetes mellitus (T2DM). However, the effects of diet on pancreatic structure and function remain unclear. Rats fed a high-fat, high-fructose (HFHF) diet were compared with rats fed a normal diet for 3 and 18 months. Plasma biochemical parameters and inflammatory factors were used to reflect metabolic profile and inflammatory status. The rats developed metabolic disorders, and the size of the islets in the pancreas increased after 3 months of HFHF treatment but decreased and became irregular after 18 months. Fasting insulin, C-peptide, proinsulin, and intact proinsulin levels were significantly higher in the HFHF group than those in the age-matched controls. Plasmatic oxidative parameters and nucleic acid oxidation markers (8-oxo-Gsn and 8-oxo-dGsn) became elevated before inflammatory factors, suggesting that the HFHF diet increased the degree of oxidative stress before affecting inflammation. Single-cell RNA sequencing also verified that the transcriptional level of oxidoreductase changed differently in islet subpopulations with aging and long-term HFHF diet. We demonstrated that long-term HFHF diet and aging-associated structural and transcriptomic changes that underlie pancreatic islet functional decay is a possible underlying mechanism of T2DM, and our study could provide new insights to prevent the development of diet-induced T2DM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.