Abstract

The role of interferon-alpha (IFN-alpha) remains unclear in prevention of virus-induced hepatocellular carcinoma in humans. We have investigated it herewith in the X/myc transgenic mouse model of Hepadnavirus-related hepatocarcinogenesis because of upregulation of c-myc oncogene in the liver. We have demonstrated that IFN-alpha can downregulate dose-dependently hepatocyte proliferation and c-myc overexpression at early premalignant stages, while it does not affect either hepatocyte apoptosis or telomerase activity at these steps. However, continuous and long-term administration of IFN-alpha dose-dependently delays tumor onset in dysplastic livers and increases overall survival of animals, more efficiently whether started before the onset of dysplasia. The present study therefore highlights that early preventive administration of IFN-alpha can slow down evolution towards hepatocellular carcinoma via repression of c-myc and hepatocyte proliferation at premalignant steps in experimental c-myc-induced hepatocarcinogenesis. However, the transient effect observed in this study emphasizes a need to clarify the possible mechanisms of acquired resistance and subsequent therapeutic escape. Our experimental model may be a pertinent tool to explore antioncogenic properties of IFN-alpha in human cirrhotic livers showing c-myc upregulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.