Abstract

It is not certain that long-term grazing exclusion influences arbuscular mycorrhizal (AM) fungi and their association with steppe vegetation. In this study, soil and plant samples were collected from two sites of grazing exclusion since 1983 (E83) and 1996 (E96), and one site of free-grazing (FG) in the typical steppe of Xilinguole League, Inner Mongolia, China, and assayed for soil basic physicochemical properties, AM fungal parameters, aboveground biomass and shoot phosphorus (P) uptake as well. The results showed that long-term grazing exclusion of E83 and E96 led to less drastic seasonal changes and significant increases in spore density, hyphal length density and root colonization intensity of AM fungi and even soil alkaline phosphatase activity, by up to 300, 168, 110 and 102%, respectively, compared with those of FG site. In addition, the total aboveground biomass and shoot P uptake of E83 and E96 were 75–992% and 58–645%, respectively, higher than those of FG. Generally, the root colonization intensity, spore density, and hyphal length density of AM fungi were all positively correlated with the aboveground biomass and even shoot P uptake of plant. These results may imply that grazing exclusion play a critical role in increasing the growth of AM fungi, and subsequently, may increase plant P uptake and aboveground biomass production. Moreover, the spore density could sensitively reflect the impacts of long-term grazing exclusion on AM fungi since survival strategy of spores in soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.