Abstract

Parkinson's disease (PD) is characterized by the progressive degeneration of the nigrostriatal dopaminergic system. Brain delivery of glial cell line-derived neurotrophic factor (GDNF) has been shown to protect and restore the dopaminergic pathway in various animal models of PD. However, GDNF overexpression in the dopaminergic pathway leads to a time-dependent down-regulation of tyrosine hydroxylase (TH), a key enzyme in dopamine synthesis. In order to elucidate GDNF-mediated biochemical effects on dopaminergic neurons, we overexpressed GDNF in the intact rat striatum using a lentiviral vector-mediated gene transfer technique. Long-term GDNF overexpression led to increased GTP cyclohydrolase I (GTPCH I) activity and tetrahydrobiopterin (BH4) levels. Further, we observed a down-regulation of TH enzyme activity in morphologically intact striatal dopaminergic nerve terminals, as well as a significant decrease of dopamine levels in striatal tissue samples. These results indicate that long-term GDNF delivery is a major factor affecting dopamine biosynthesis via a direct or indirect modulation of TH and GTPCH I and further underscore the importance of assessing both GDNF dose and delivery duration prior to clinical application in order to circumvent potentially adverse pharmacological effects on the biosynthesis of dopamine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.