Abstract

Microbial volatile organic compounds (VOCs) can suppress plant pathogens. Although fertilization strongly affects soil microbial communities, the influence of fertilization on microbial VOC-mediated suppression of pathogens has not been elucidated. Soil was sampled from a paddy field that had been subjected to the following treatments for 30 years: a no-fertilizer control, mineral fertilization (NPK), NPK combined with rice straw (NPK + S), NPK combined with chicken manure (70% NPK + 30% M). Then, within a laboratory experiment, pathogens were exposed to VOCs without physical contact to assess the impact of VOCs emitted from paddy soils on in vitro growth of the fungal rice pathogens: Pyricularia oryzae and Rhizoctonia solani. The VOCs emitted from soil reduced the mycelial biomass of P. oryzae and R. solani by 36–51% and 10–30%, respectively, compared to that of the control (no soil; no VOCs emission). Overall, the highest suppression of P. oryzae and R. solani was in the NPK and NPK + S soils, which emitted more quinones, phenols, and low alcohols than NPK + M soils. The abundances of quinones and phenols in the soil air were maximal in the NPK-fertilized soil because the low ratio of dissolved organic carbon and Olsen-P increased the population of key species such as Acidobacteriae, Anaerolineae, and Entorrhizomycetes. The abundance of alcohols was minimum in the NPK + S fertilized soil because the high SOC content decreased the population of Sordariomycetes. In conclusion, mineral fertilization affects bacterial and fungal VOC emissions, thereby suppressing the growth of R. solani and P. oryzae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call