Abstract

The prediction of extreme loads for the offshore floating wind turbine is analyzed based on the inverse reliability technique. The inverse reliability approach is in general used to establish the design levels associated with the specified probability of failure. The present study is performed using the environmental contour (EC) method to estimate the long-term joint probability distribution of extreme loads for different types of offshore floating wind turbines. The analysis is carried out in order to predict the out-of-plane bending moment (OoPBM) loads at the blade root and tower base moment (TBM) loads for a 5 MW offshore floating wind turbine of different floater configuration. The spar-type and semisubmersible type offshore floating wind turbines are considered for the analysis. The FAST code is used to simulate the wind conditions for various return periods and the design loads of various floating wind turbine configurations. The extreme and operation situation of the spar-type and semisubmersible type offshore floating wind turbine are analyzed using one-dimensional (1D) and two-dimensional (2D)-EC methods for different return periods. The study is useful to predict long-term design loads for offshore wind turbines without requiring excessive computational effort.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.