Abstract
To overcome the limitations of standard hollow-fiber module in ensuring efficient cell perfusion and long-term expression of highly differentiated hepatocyte functions, we developed a novel bioreactor in which a three-dimensional hepatocyte culture system was perfused in radial-flow geometry. Isolated porcine hepatocytes were cultured for 2 weeks in recirculating serum-free tissue culture medium, in which NH4Cl and lidocaine were repeatedly added, and ammonia removal, urea synthesis, monoethylglycinexylide (MEGX) production, albumin secretion, Po2, Pco2, O2 consumption, and pH were measured thereafter. During the whole duration of the study, ammonia removal was paralleled by urea production, while MEGX concentration was constantly increased. Our results indicated that hepatocytes remained differentiated and metabolically active throughout the duration of the study. The radial-flow bioreactor allowed physiological contact between recirculating fluid and cells by equalizing the concentration of the perfusing components, including O2, throughout the module, suggesting a potential use of this configuration for extracorporeal liver support.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.