Abstract

The expression of immune-related genes in cancer cells can alter the anti-tumor immune response and thereby impact patient outcomes. Radiotherapy has been shown to modulate immune-related genes dependent on the fractionation regimen. To identify long-term changes in gene expression after irradiation, PC3 (p53 deleted) and LNCaP (p53 wildtype) prostate cancer cells were irradiated with either a single dose (SD, 10Gy) or a fractionated regimen (MF) of 10 fractions (1Gy per fraction). Whole human genome arrays were used to determine gene expression at 24h and 2months after irradiation. Immune pathway activation was analyzed with Ingenuity Pathway Analysis software. Additionally, 3D colony formation assays and T-cell cytotoxicity assays were performed. LNCaP had a higher basal expression of immunogenic genes and was more efficiently killed by cytotoxic T-cells compared to PC3. In both cell lines, MF irradiation resulted in an increase in multiple immune-related genes immediately after irradiation, while at 2months, SD irradiation had a more pronounced effect on radiation-induced gene expression. Both immunogenic and immunosuppressive genes were upregulated in the long term in PC3 cells by a 10Gy SD irradiation but not in LNCaP. T-cell-mediated cytotoxicity was significantly increased in 10Gy SD PC3 cells compared to the unirradiated control and could be further enhanced by treatment with immune checkpoint inhibitors. Irradiation impacts the expression of immune-related genes in cancer cells in a fractionation-dependent manner. Understanding and targeting these changes may be a promising strategy for primary prostate cancer and recurrent tumors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call