Abstract

ABSTRACTBackgroundFuzzy inference systems (FISs) based on fuzzy theory in mathematics were previously applied to infer supplementary points for the limited number of monitoring sites and improve the uncertainty of spatial data. Therefore we adopted the FIS method to simulate spatiotemporal levels of air pollutants [particulate matter <2.5 μm (PM2.5), sulfur dioxide (SO2) and (NO2)] and investigated the association of levels of air pollutants with the community-based prevalence of chronic kidney disease (CKD).MethodsA Complex Health Screening program was launched during 2012–2013 and a total of 8284 community residents in Chiayi County, which is located in southwestern Taiwan, received a series of standard physical examinations, including measurement of estimated glomerular filtration rate (eGFR). CKD cases were defined as eGFR <60 mL/min/1.73 m2 and were matched for age and gender in a 1:4 ratio of cases:controls. Data on air pollutants were collected from air quality monitoring stations during 2006–2016. The longitude, latitude and recruitment month of the individual case were entered into the trained FIS. The defuzzification process was performed based on the proper membership functions and fuzzy logic rules to infer the concentrations of air pollutants. In addition, we used conditional logistic regression and the distributed lag nonlinear model to calculate the prevalence ratios of CKD and the 95% confidence interval. Confounders including Framingham Risk Score (FRS), diabetes, gout, arthritis, heart disease, metabolic syndrome and vegetables consumption were adjusted in the models.ResultsParticipants with a high FRS (>10%), diabetes, heart disease, gout, arthritis or metabolic syndrome had significantly increased CKD prevalence. After adjustment for confounders, PM2.5 levels were significantly increased in CKD cases in both single- and two-pollutant models (prevalence ratio 1.31–1.34). There was a positive association with CKD in the two-pollutant models for NO2. However, similar results were not observed for SO2.ConclusionsFIS may be helpful to reduce uncertainty with better interpolation for limited monitoring stations. Meanwhile, long-term exposure to ambient PM2.5 appears to be associated with an increased prevalence of CKD, based on a FIS model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.