Abstract

Extracellular signal-regulated kinases (ERK) have fundamental roles in tumor progression. However, human clinical trials have shown little or no effect of inhibitors of their upstream signaling molecule, mitogen-activated protein kinase/ERK kinase (MEK), in advanced cancers. To determine the molecular mechanism underlying the limited antitumor effect, we cultured two human renal carcinoma cell lines, ACHN cells and VMRC-RCW cells in the presence of a MEK inhibitor PD98059 for more than 4 weeks (PD98059-exposed cells). PD98059-exposed ACHN cells showed elongated cell shape with scattering morphology, increase in vimentin expression, loss of beta-catenin junctional localization, stress fiber formation, and increased motility. In contrast, VMRC-RCW cells showed scattered phenotype without PD98059-treatment, and this treatment failed to increase the expression of vimentin. Rho A activity was increased in PD98059-exposed ACHN cells. In these cells, enhanced stress fiber formation and motility were observed, both of which were inhibited by treatment with small interfering RNA for Rho A or an Rho kinase inhibitor Y27632. Our results suggest that long-term exposure of human renal carcinoma cells to PD98059 increases cell motility by upregulating Rho A-Rho kinase signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.