Abstract

Previous research indicated that fish populations in arctic lakes maintain a constant size distribution and abundance in the face of the environmental variability experienced over their recent history. Such stability was tested over 15 seasons in Little Nauyuk and Gavia lakes (Northwest Territories) which contained previously undisturbed populations of Arctic char (Salvelinus alpinus). Initially, the length–frequency distribution of Arctic char in Little Nauyuk Lake was bell shaped, and in Gavia Lake, it could be described by a negative logarithmic expression. Initial sampling of Gavia Lake removed the largest fish, allowing a well-defined mode to develop (cf. Little Nauyuk Lake). In both lakes the modal value remained constant throughout the exploitation phase. When fishing ceased the populations returned to their original state without evident oscillation. The stable state of the dominant population is considered to be one of "least dissipation". It is hypothesized that ecosystem structure depends on countervailing forces, one tending to decelerate energy flow through the ecosystem and the second tending to accelerate it. For ecosystems to exist, the tendency to decelerate energy flow must dominate system behaviour over ecological time. An ecosystem is regarded as a hemeorhetic system, stability seeking through the stabilization of energy flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.