Abstract

We investigate the brightness evolution of 7 FU Orionis systems in the 1-100 micrometer wavelength range using data from the Infrared Space Observatory (ISO). The ISO measurements were supplemented with 2MASS and MSX observations performed in the same years as the ISO mission (1995-98). The spectral energy distributions (SEDs) based on these data points were compared with earlier ones derived from the IRAS photometry as well as from ground-based observations carried out around the epoch 1983. In 3 cases (Z CMa, Parsamian 21, V1331 Cyg) no difference between the two epochs was seen within the measurement uncertainties. V1057 Cyg, V1515 Cyg and V1735 Cyg have become fainter at near-infrared wavelengths while V346 Nor has become slightly brighter. V1057 Cyg exhibits a similar flux change also in the mid-infrared. At lambda >= 60 micrometer most of the sources remained constant; only V346 Nor seems to fade. Our data on the long-term evolution of V1057 Cyg agree with the model predictions of Kenyon & Hartmann (1991) and Turner et al. (1997) at near- and mid-infrared wavelengths, but disagree at lambda > 25 micrometer. We discuss if this observational result at far-infrared wavelengths could be understood in the framework of the existing models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.