Abstract

Long-term evolution of areas with open configuration of magnetic field (coronal holes) on the Sun reconstructed on the basis of H-alpha synoptic charts for the period 1887-2016 was studied and compared with annual occurrence frequencies of magnetic storms with gradual (GC) commencements. It was found that correlation between yearly values of coronal hole (CH) areas and sunspot numbers with no time shift is negative and not strong, but increases up to ∼0.6-0.7 when CH areas are delayed by 4-5 years relative to sunspot numbers. Temporal variations of CH areas in the Northern and Southern hemispheres are characterized by dominant ∼11-year periodicities; however, they differ significantly on the multidecadal time scale. The wavelet spectra of CH areas in the Southern hemisphere, unlike those in the Northern one, reveal persistent periodicities of ∼30-35 years on the studied time interval. Similar periodicities of ∼30-35 years are observed in annual occurrences of GC magnetic storms which are caused by high-speed streams of solar wind from coronal holes. The results of cross wavelet analysis of annual occurrence frequencies of GC magnetic storms and areas of coronal holes revealed common periodicities ∼11, ∼35 and ∼60 years which confirmed a close link of these storms with the evolution of large-scale magnetic fields on the Sun.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call