Abstract

ABSTRACT About 10 per cent of stars more massive than ${\approx}1.5\, {\mathrm{M}}_{\odot }$ have strong, large-scale surface magnetic fields and are being discussed as progenitors of highly magnetic white dwarfs and magnetars. The origin of these fields remains uncertain. Recent three-dimensional (3D) magnetohydrodynamical simulations have shown that strong magnetic fields can be generated in the merger of two massive stars. Here, we follow the long-term evolution of such a 3D merger product in a 1D stellar evolution code. During a thermal relaxation phase after the coalescence, the merger product reaches critical surface rotation, sheds mass and then spins down primarily because of internal mass readjustments. The spin of the merger product after thermal relaxation is mainly set by the co-evolution of the star–torus structure left after coalescence. This evolution is still uncertain, so we also consider magnetic braking and other angular momentum-gain and -loss mechanisms that may influence the final spin of the merged star. Because of core compression and mixing of carbon and nitrogen in the merger, enhanced nuclear burning drives a transient convective core that greatly contributes to the rejuvenation of the star. Once the merger product relaxed back to the main sequence, it continues its evolution similar to that of a genuine single star of comparable mass. It is a slow rotator that matches the magnetic blue straggler τ Sco. Our results show that merging is a promising mechanism to explain some magnetic massive stars and it may also be key to understand the origin of the strong magnetic fields of highly magnetic white dwarfs and magnetars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.