Abstract
During the collapse of a massive star greater than 35- 40 M ⊙ , stellar core is considered to promptly collapse to a black hole. and stellar material may fall onto the hole greater than several solar masses with extremely high accretion rates (> 1 M ⊙ s -1 ). If the star has a sufficiently high angular momentum before the collapse, an accretion disk is likely to form around the black hole. Jets are suggested to be launched from the inner region of the accretion disk near the hole through magnetic and/or neutrino processes. Gamma-Ray Bursts (GRBs) are expected to be driven by the jets. This scenario of GRBs is called the collapsar model. Recently, magnetohydrodynamic (MHD) simulations were performed of the collapse of rapidly rotating, magnetized 25 M ⊙ and 40 M ⊙ stars in light of the collapsar model of GRBs (see papers listed at the end of the paper). For assumed angular velocity distributions and the uniform magnetic fields, the collapsars are shown to eject jets driven through the magnetic pressure. The simulations are however performed up to 4 s, which are shorter than durations of long GRBs ∼ 10 s. In the present work. we have performed long-tern (∼ 10 s), two-dimensional, MHD simulations of the collapse of a rapidly totaling, magnetized 40 M ⊙ star.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.