Abstract

Estrogen status has profound effects on cutaneous sensitivity in adult female rats. The presence of α-estrogen receptor mRNA and protein in NGF-dependent, adult female rat dorsal root ganglion (DRG) neurons raises the possibility that estrogen modulates cutaneous sensation by acting directly on primary afferent neurons, perhaps by altering their sensitivity to NGF. The present study examined the effect of long-term (90 days) daily injections of an estrogen preparation, Premarin (Wyeth-Ayerst, Radnor, PA), to ovariectomized adult rats on lumbar DRG high-affinity NGF receptor, trkA, mRNA levels, and on β-preprotachykinin (β-PPT) mRNA levels, which have been shown to be regulated by NGF. Two doses were used in the experiments, the higher dose being 10 times that of the lower dose. Such injections had an effect opposite that reported for short-term, acute estrogen treatment on DRG trkA mRNA levels. The current data show that long-term daily estrogen treatment decreases trkA mRNA levels by 36%. After 90 days of estrogen treatment, no dose effect was evident. Moreover, as would be expected if β-PPT gene expression is regulated by NGF through the trkA receptor, long-term estrogen treatment decreased DRG neuronal β-PPT mRNA levels by about 30%. As with trkA, there was no dose effect evident after 90 days of estrogen treatment. These data suggest the possibility that estrogen modulates DRG neuropeptide gene expression and, perhaps, cutaneous sensitivity by regulating NGF receptor gene expression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.