Abstract

Abstract Long-term boiling experiments with long-life coolant have been made with the aim to apply a boiling cooling technology to the next generation high exothermic electronic devices. The long-life coolant commonly used for cooling electronic devices is a mixture of ethylene glycol and water with multiple antirust inhibitors as additives, which may result in some depositions on the heat transfer surface during the boiling. In this study, the heat transfer surface made of copper was set vertically, and long-term experiments have been performed under the pool boiling. The deposition process was monitored for constant heating conditions. From experimental results, a distinct surface temperature change was observed under constant heat flux conditions. Just after keeping constant heat flux, the surface temperature increases with time, a certain time later decreases, and finally takes a stable value. During the temperature rise, the deposition adheres to the heat transfer surface in dots, which may cause an increase in thermal resistance between the wall surface and the working fluid. However, during the temperature drop, large growth of dot-like depositions on the heat transfer surface could alter wettability and surface roughness, enhancing boiling heat transfer. In addition, to investigate the characteristics of the depositions adhered to the heat transfer surface, a component analysis has been performed, which shows that the main substance was strontium hydroxyapatite, which might be formed by chemical reaction between components in the additives under the boiling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.