Abstract
Early growth conditions, such as exposure to maternally derived androgens in bird eggs, have been shown to shape offspring in ways that may have important long-term consequences for phenotype and behavior. Using an experimental approach, we studied the long-term effects of yolk androgens on several phenotypic traits and parental behavior in adult and female collared flycatchers (Ficedula albicollis). We elevated yolk androgen levels and monitored the experimental recruits the following breeding seasons. Androgen treatment had a sex-dependent effect on adult body condition, yolk androgen-treated males being heavier than control males when controlling for size, a result which may be caused potentially by selective mortality, physiological differences, or different life-history strategies. Androgen treatment did not however affect the expression of sexually selected plumage ornaments (forehead and wing patch size), UV coloration, or parental feeding rate in either sex. Our results suggest that yolk androgens are unlikely to affect sexual selection via plumage characteristics or contribute to breeding success via altered parental care. Yolk androgens do not seem to act as a means for female collared flycatchers to enhance the attractiveness of their sons. The lower return rate previously observed for androgen-treated male offspring compared to controls may therefore not be due to lower mating or breeding success, but may rather reflect lower survival or higher dispersal propensity of yolk androgen-treated males.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.