Abstract

In this study, the long-term effects of ultrafine tourmaline particles (UTPs) on the removal of nitrogen in wastewater, activated sludge viability and microbial population dynamics at low temperatures were investigated. Although there was no significant effect on the effluent concentrations of nitrogen after long-term exposure to 1 g/L UTPs at low temperatures, the oxidation rate of NH4+-N and the accumulation rate of NO2−-N increased and the formation rate of NO3−-N decreased during the aerobic phase of sequencing batch reactors. However, long-term exposure to 1 g/L UTPs did not significantly affect the microbial community richness and the community diversity of activated sludge at low temperatures. The mechanism of tourmaline was studied by assessing the dominant functional species involved in biological nitrogen removal from wastewater. It was found that 1 g/L UTPs increased the removal rate of nitrogen by reducing the relative abundance of nitrite oxidizing bacteria and increasing the relative abundance of ammonia oxidizing bacteria after long-term operation at low temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call