Abstract

Children of mothers who abused alcohol during pregnancy are often reported to suffer from growth retardation and central nervous system (CNS) abnormalities. The use of prenatal alcohol exposed (PAE) animal models has revealed reductions in body and brain weights as well as regional specific brain deficits in neonatal pups. Recently, we and others reported reductions in the size of the posteromedial barrel subfield (PMBSF) in first somatosensory cortex (SI) associated with the representation of the large mystacial vibrissae in neonatal rats and mice that were exposed to alcohol at various times during gestation. While these reductions in barrel field size were reported in neonates, it was unclear whether similar reductions persisted later in life or whether some catch-up might take place in older animals. In the present study, we examined the effect of PAE on measures of barrel field size in juvenile (6 weeks of age) and adult (7 months of age) rats; body and brain weights were also measured. Pregnant rats (Sprague-Dawley) were intragastrically gavaged during gestational days 1–20 with alcohol (6 g/kg) to simulate a binge-like pattern of alcohol consumption (Alc); 6 g/kg alcohol produced blood alcohol levels ranging between 207.4 and 478.6 mg/dl. Chow-fed (CF), pair-fed (PF), and cross-foster (XF) groups served as normal, nutritional/stress, and maternal controls, respectively, for juvenile rats; an XF group was not included for adult rats. The major findings in the present study are (i) PAE significantly reduced the size of the total barrel field in Alc juvenile rats (13%) and adult rats (9%) compared to CF controls, (ii) PAE significantly reduced the total averaged sizes of individual PMBSF barrels in juvenile (14%) and adult (13%) rats, (iii) PAE did not significantly alter the septal area between barrels or the barrel pattern, (iv) PAE significantly reduced body weight of juvenile rats but only in comparison to PF controls (18%), (v) PAE significantly reduced whole brain (8%) and forebrain (7%) weights of juvenile rats but not adult rats, (vi) no differences were observed in forebrain/PMBSF body ratios nor was forebrain weight correlated with PMBSF area, and (vii) PAE resulted in a greater reduction in anterior barrels compared to posterior barrels. These results suggest that the effects of PAE previously reported in neonate PMBSF areas persist into adulthood.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call