Abstract

Numerous clinical studies have demonstrated an association between early stressful life events and adult life psychiatric disorders including schizophrenia. In rodents, early life exposure to stressors such as maternal deprivation (MD) produces numerous hormonal, neurochemical, and behavioral changes and is accepted as one of the animal models of schizophrenia. The stress induces acetylcholine (Ach) release in the forebrain and the alterations in cholinergic neurotransmitter system are reported in schizophrenia. The aim of this study was to examine long-term effects of maternal separation on acetylcholinesterase (AChE) activity in different brain structures and the density of cholinergic fibers in hippocampus and retrosplenial (RS) cortex. Wistar rats were separated from their mothers on the postnatal day (P) 9 for 24 h and sacrificed on P60. Control group of rats was bred under the same conditions, but without MD. Brain regions were collected for AChE activity measurements and morphometric analysis. Obtained results showed significant decrease of the AChE activity in cortex and increase in the hippocampus of MD rats. Density of cholinergic fibers was significantly increased in CA1 region of hippocampus and decreased in RS cortex. Our results indicate that MD causes long-term structure specific changes in the cholinergic system.

Highlights

  • Animal model of maternal deprivation (MD) is based on exposure to stress in early postnatal life

  • Our results indicate that MD causes long-term structure specific changes in the cholinergic system

  • Recent studies show that selective muscarinic receptor agonist can improve cognitive dysfunction in patients affected with schizophrenia [13]

Read more

Summary

Introduction

Animal model of maternal deprivation (MD) is based on exposure to stress in early postnatal life. There is evidence that early stressful life events can increase the risk of developing schizophrenia [3,4,5]. Typical symptoms of schizophrenia can be divided into positive, negative, and cognitive ones. Typical antipsychotic drugs are effective in reducing the positive symptoms, but there is no efficacy against the negative symptoms and cognitive disorder [6,7,8]. Cholinergic disturbance in basal forebrain structures and their projections in schizophrenia could be notable for cognitive dysfunction given their known functional roles in conscious awareness and components of information processing, including attention, working memory, encoding memory consolidation, and retrieval [11, 12]. Recent studies show that selective muscarinic receptor agonist (xanomeline) can improve cognitive dysfunction in patients affected with schizophrenia [13]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call