Abstract

A rat model of novelty-seeking phenotype predicts vulnerability to nicotine relapse where locomotor reactivity to novelty is used to rank high (HR) versus low (LR) responders. Present study investigates implication of cannabinoid receptor 1 (CB1R) in the basolateral (BLA) and the central (CeA) nuclei of amygdala in behaviorally sensitizing effects of nicotine and accompanying social anxiety following juvenile nicotine training and a 1- or 3-wk injection-free period in the novelty-seeking phenotype. Sprague-Dawley rats were phenotype screened, and received four, saline (1 ml/kg; s.c) or nicotine (0.35 mg/kg; s.c) injections, followed by a 1- or 3-wk injection-free period. Subsequently, animals were challenged with a low dose of nicotine (0.1 mg/kg; s.c.), subjected to the social interaction test and sacrificed. In situ hybridization histochemistry was used to assess CB1R messenger RNA (mRNA) levels in the amygdala. Nicotine pre-trained HRs displayed expression of locomotor sensitization to nicotine challenge along with enhanced social anxiety compared to saline pre-trained controls following a 1- or 3-wk injection-free period. HR-specific behavioral effects were accompanied by decreased CB1R mRNA levels in the CeA and the BLA following a 1-wk injection-free period. Decreased CB1R mRNA levels in both compartments of the amygdala were also observed following nicotine challenge in saline pre-trained HRs after a 3-wk injection-free period compared to HRs after a 1-wk injection-free period. These findings show robust, long-lasting expression of behavioral sensitization to nicotine in HRs associated with changes in amygdalar CB1R mRNA as a potential substrate for abstinence-related anxiety.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.