Abstract

Pesticide chlorothalonil is widely applied in tea agroecosystem, potentially disturbing soil microbial-mediated nitrogen cycle. The underlying toxicity mechanism, however, is not well explored. Here, we investigated the long-term effects of chlorothalonil on soil microbial denitrification and N2O emission pattern in a tea field after 40days of exposure. Results showed that chlorothalonil inhibited denitrification process but remarkably promoted N2O emission by 380-830%. Chlorothalonil significantly inhibited N2O reductase activity but did not affected nosZ abundance. Our results further revealed that chlorothalonil influenced soil denitrification by directly suppressing microbial electron transport system activity, and decreasing electron donor nicotinamide adenine dinucleotide (NADH) and energy source adenosine triphosphate (ATP) levels. Additionally, chlorothalonil also downregulated denitrifying functional genes (narG, nirS, and norB) and declined the relative abundances of potential denitrifiers (i.e., Pseudomonas and Streptomyces). Stepwise regression andpath modeling suggested that nitrate reductase was the most significant factor in explaining denitrification rate under chlorothalonil applications. This study provides important information for revealing the chronic impacts of pesticide on tea soil denitrification and N2O emission on the basis of electron transport mechanism. Most significantly, N2O emission is underestimated in chlorothalonil-treated soils, which suggests that future estimations of N2O emission from agricultural lands should take account of pesticide dependency conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.