Abstract

We previously demonstrated that a hydrophilic photosensitizer ATX-S10 had a potent photodynamic effect. This study was designed to reveal the long-term effectiveness of photodynamic therapy (PDT) with this agent in occluding choroidal neovascularization (CNV) and its selectivity in the neovascular tissue. Experimental CNV was induced by intense photocoagulation in rat eyes. Immediately or 2 hours after intravenous injection of 8 mg/kg body weight of ATX-S10(Na), a cis isomer of ATX-S10, eyes were irradiated by a diode laser at the radiance of 3.25-65.3 J/cm(2) Vascular occlusion was identified by fundus photography, fluorescein angiography, and histology at 1, 3, 7, 14, and 28 days after PDT. As controls, non-neovascular eyes were subjected to PDT and similarly analyzed. By using the following treatment parameters, PDT with ATX-S10(Na) successfully occluded CNV without causing occlusion of retinal capillaries for 28 days; 7.4 and 19.6 J/cm(2) immediately after dye injection and 36.7 and 65.3 J/cm(2) 2 hours after injection. Although these conditions also caused occlusion of normal choriocapillaries and mild injuries of retinal vessels, retinal pigment epithelium, and photoreceptors at 1 day, retinal vessels and pigment epithelial cells recovered from damages by 28 days. No injuries were found in the inner retina. In optimal treatment conditions, PDT with ATX-S10(Na) can induce long-term, selective occlusion of CNV without causing irreversible damages in the inner retina.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.