Abstract

The effect of soil solarization on physical, chemical and biological properties of soil was studied, along with the response of cauliflower seedlings following solarization. Nursery beds were covered with transparent polyethylene sheet and soil temperature and moisture were recorded. Soil samples were collected five times for analysis. Three cauliflower nurseries were raised at 30-day intervals; germination was recorded 10 days after sowing and seedling length 30 days after sowing. The maximum temperature in solarized soil ranged from 40.2–47.2°C, with an increase of 5.2° to 9.9°C over non-solarized soil. There was a conservation of 5.48% moisture in solarized soil as compared with non-solarized. Solarization significantly increased electrical conductivity, organic carbon, nitrogen and potassium over pre-solarized soil. The mean pH, EC, Ca, Mg, N, P, K and C recorded in solarized soil was higher than in non-solarized. Soil solarization reduced the population of fungi from 25.68 x 104 to 4.8 x 104, bacteria from 20.28 x 106 to 5.66 x 106, actinomycetes from 31.60 x 105 to 4.40 x 105, and reduction in population was recorded even after 90 days, when compared with non-solarized soil. Solarization effectively reduced (>97%) population of plant parasitic and free living nematodes. Cauliflower seedlings in solarized soil had a better vigor index than non-solarized soil. Present findings reveal that soil solarization could be exploited for nutrient management and soilborne pests control, with a better vigor index of vegetable nursery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call