Abstract
Long-term (48-h) forskolin treatment of rat astroglial cells led to a slight decrease (30-40%) in the response to isoproterenol, vasoactive-intestinal peptide, guanyl 5'-(beta gamma-imido)diphosphate, guanosine 5'-O-(3-thiotriphosphate) [GTP(S)], and AIF4- in crude membrane fractions. In contrast, the acute stimulatory effect of forskolin was increased by 1.25-1.5-fold. These two opposite effects of forskolin were mediated by a cyclic AMP-dependent mechanism. No changes in Gs alpha, Gi alpha, or G beta protein levels could be determined by immunoblotting using specific antisera. No significant differences were observed in the ability of G proteins extracted from control and forskolin-treated cells to reconstitute a full adenylyl cyclase activity in membranes from S49 cyc- cells, lacking Gs alpha protein. Gs alpha proteins were detected in two pools of membranes, one in the heavy sucrose fractions and the other in light sucrose fractions. Forskolin treatment of the cells shifted Gs alpha protein toward the light-density membranes. We did not find any significant change in the distribution of adenylyl cyclase. In contrast to the decreased stimulation of adenylyl cyclase activity by agonists acting via Gs alpha, observed in the crude membrane fraction, the responses of adenylyl cyclase to forskolin as well as to GTP(S) were increased in the purified plasma membrane fractions. These results may indicate that sensitization of the catalyst appears to be the dominant component in the astroglial cell response to long-term treatment by forskolin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.