Abstract
The well-posedness and asymptotic dynamics of second-order-in-time stochastic evolution equations with state-dependent delay is investigated. This class covers several important stochastic PDE models arising in the theory of nonlinear plates with additive noise. We first prove well-posedness in a certain space of functions which are \begin{document}$C^1$\end{document} in time. The solutions constructed generate a random dynamical system in a \begin{document}$C^1$\end{document} -type space over the delay time interval. Our main result shows that this random dynamical system possesses compact global and exponential attractors of finite fractal dimension. To obtain this result we adapt the recently developed method of quasi-stability estimates to the random setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.