Abstract

We present a synthesis of long-term measurements of CO2 exchange in 2 US Intermountain West sagebrush-steppe ecosystems. The locations near Burns, Oregon (1995–2001), and Dubois, Idaho (1996–2001), are part of the AgriFlux Network of the Agricultural Research Service, United States Department of Agriculture. Measurements of net ecosystem CO2 exchange (Fc) during the growing season were continuously recorded at flux towers using the Bowen ratio-energy balance technique. Data were partitioned into gross primary productivity (Pg) and ecosystem respiration (Re) using the light-response function method. Wintertime fluxes were measured during 1999/2000 and 2000/2001 and used to model fluxes in other winters. Comparison of daytime respiration derived from light-response analysis with nighttime tower measurements showed close correlation, with daytime respiration being on the average higher than nighttime respiration. Maxima of Pg and Re at Burns were both 20 g CO2 � m � 2 � d � 1 in 1998. Maxima of Pg and Re at Dubois were 37 and 35 g CO2 � m � 2 � d � 1 , respectively, in 1997. Mean annual gross primary production at Burns was 1 111 (range 475–1 715) g CO2 � � � � � � � � site could be a C sink or source, mostly depending on precipitation timing and amount. Total annual precipitation is not a good predictor of carbon sequestration across sites. Our results suggest that Fc should be partitioned into Pg and Re components to allow prediction of seasonal and yearly dynamics of CO2 fluxes. Resumen

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.