Abstract

BackgroundSeveral studies have pointed out that seemingly chronic multiple sclerosis (MS) lesions may also be in inflammatory states. In pathological studies, up to 40% of chronic MS lesions are characterized as “chronic active” or “smoldering” lesions that are characterized by a rim of iron-laden proinflammatory macrophages/microglial cells at the lesion edge with low-grade continuous myelin breakdown. In vivo, these lesions can be visualized as “iron rim lesions” (IRLs) on susceptibility-weighted imaging (SWI). The aim of this study was to investigate the long-term dynamics of IRLs in vivo for a more detailed evolution of dynamic lesion volume changes occurring over time. MethodsWe retrospectively identified patients with MS who were followed for at least 36 months (up to 72 months) and underwent at least an annual MRI on the same 3 Tsystem. Using Voxel-Guided Morphometry (VGM) we investigated regional volume changes within lesions and correlated these findings with SWI for the presence of a characteristic hypointense lesion rim. To estimate tissue damage, apparent diffusion coefficient (ADC) values for every lesion at baseline and follow-up MRIs were determined. ResultsForty-three patients were included in the study. Overall, we identified 302 supratentorial non-confluent MS lesions (52 persistent IRLs, nine transient IRLs, 228 non-IRLs and 13 acute contrast-enhancing lesions). During follow-up, persistent IRLs significantly enlarged, whereas non-IRLs showed a tendency to shrink. At baseline MRI, ADC values were significantly higher in persistent IRLs (1.23 × 10−3 mm/s2) compared to non-IRLs (1.01 × 10−3 mm/s2; p < 0.001), but not compared to transient IRLs (1.06 × 10−3 mm/s2; p = 0.15) and contrast-enhancing lesions (1.15 × 10−3 mm/s2; p = 1.0). During follow-up, ADC values significantly increased more often in persistent IRLs compared to all other lesion types (p < 0.0001). ConclusionsOur long-term data demonstrate that persistent IRLs enlarge during disease duration, whereas non-IRLs show a tendency to shrink. Furthermore, IRLs are associated with sustained tissue damage, supporting the notion that IRLs could represent a new imaging biomarker in MS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.