Abstract
Recent extreme droughts in Europe have highlighted the urgent need to quantify their effects on ecohydrological fluxes (evapotranspiration, groundwater recharge) and water storage (mainly soil moisture) in the landscape. In response, we combined process-based (EcH2O-iso) and machine learning (NARX) models to estimate the enduring effects of long-term drought on water fluxes and storage and to project future short-term groundwater levels and recovery potential under various precipitation scenarios. The work was undertaken at the Demnitz Mill Creek (DMC), a 70 km2 mixed land use (arable crops and forestry) catchment in northern Germany. Our simulations indicated that the extreme drought years of 2018 and 2022 had the most marked impacts, leading to substantial declines in groundwater recharge (>40 %), evapotranspiration (up to 16 %) and soil moisture (up to 6 %). Simulations indicated that groundwater levels may not recover in the next 15 years if recent precipitation anomalies persist. These findings underscore the urgent requirement for enhancing resilience and promoting integrated strategies in managing land and water resources to optimise water retention in landscapes and to better respond to drought.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.