Abstract

Mixed allogeneic hematopoietic chimerism has previously been reliably achieved and shown to induce tolerance to fully MHC-mismatched allografts in mice and monkeys. However, the establishment of hematopoietic chimerism has been difficult to achieve in the discordant pig-to-primate xenogeneic model. To address this issue, two cynomolgus monkeys were conditioned by whole body irradiation (total dose 300 cGy) 6 and 5 days before the infusion of pig bone marrow (BM). Monkey anti-pig natural antibodies were immunoadsorbed by extracorporeal perfusion of monkey blood through a pig liver, immediately before the intravenous infusion of porcine BM (day 0). Cyclosporine was administered for 4 weeks and 15-deoxyspergualin for 2 weeks. One monkey received recombinant pig cytokines (stem cell factor and interleukin 3) for 2 weeks, whereas the other received only saline as a control. Both monkeys recovered from pancytopenia within 4 weeks of whole body irradiation. Anti-pig IgM and IgG antibodies were successfully depleted by the liver perfusion but returned to pretreatment levels within 12-14 days. Methylcellulose colony assays at days 180 and 300 revealed that about 2% of the myeloid progenitors in the BM of the cytokine-treated recipient were of pig origin, whereas no chimerism was detected in the BM of the untreated control monkey at similar times. The chimeric animal was less responsive by mixed lymphocyte reaction to pig-specific stimulators than the control monkey and significantly hyporesponsive when compared with a monkey that had rejected a porcine kidney transplant. To our knowledge, this is the first report of long-term survival of discordant xenogeneic BM in a primate recipient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.