Abstract

Monitoring of deformation phenomena affecting urban areas and man-made structures is of key relevance for the preservation of the artistic, archaeological and architectural heritage. The differential SAR interferometry (DInSAR) technique has already been demonstrated to be an effective tool for non-invasive deformation analyses over large areas by producing spatially dense deformation maps with centimetre to millimetre accuracy. Moreover, by exploiting long sequences of SAR data acquired by different sensors, the advanced DInSAR technique referred to as the small baseline subset (SBAS) approach allows providing long-term deformation time series, which are strategic for guaranteeing the monitoring of urban area displacements. In this work, we investigate the effectiveness of the two-scale multi-sensor SBAS-DInSAR approach to detect and monitor displacements affecting historical and artistic monuments. The presented results, achieved by applying the full resolution SBAS technique to a huge set of ERS-1/2 and ENVISAT data, spanning the 1992–2010 time interval and relevant to the city of Rome (Italy), show the capability of this approach to detect and analyse the temporal evolution of possible deformation phenomena affecting historical buildings and archaeological sites. Accordingly, our analysis demonstrates the effectiveness of the full resolution multi-sensor SBAS approach to operate as a surface deformation tool for supporting the study and conservation strategies of the historical, cultural and artistic heritage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call