Abstract

In this paper, a uniaxial nonlinear finite element procedure for modeling the long-term behavior of composite beams at the serviceability limit state is presented. The finite element procedure follows a displacement-based approach. The nonlinear load–slip relationship of shear connectors as well as the creep, shrinkage, and cracking of concrete slab are accounted for in the proposed finite element procedure. The effects of creep and shrinkage of the concrete slab are considered only for uncracked concrete. The nonlinear iterative procedure adopted for tracking the nonlinear behavior of the composite beam implemented the total nodal deformations, not the incremental deformations, as the independent variables of any iteration. The results of the proposed finite element procedure were compared with the experimental results of four composite beams reported in the literature. The proposed finite element procedure was capable of predicting the deflections and stresses of the four beams with an acceptable degree of accuracy. A parametric study was conducted to study the effect of the nonlinearity of load–slip relationship of shear connectors and the cracking of the concrete deck on the long-term behavior of simply-supported composite beams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call