Abstract

Acquisition of an immortal phenotype by circumvention of the normal senescence program can be an important step in tumor development and progression. The regulation of life-span checkpoints is complex and abrogation of these processes can occur at different levels. To better understand these mechanisms in long-term cultured lymphocytes we have characterized two human long-term cultured IL-2-dependent T cell lines regarding telomere length, telomerase activity, and the expression of selected cell cycle regulators (pRb, p53, cyclin E, cyclin D1, cyclin D2, cyclin D3, cdk4, p16(INK4a), p21(WAF1), p27(KIP1), c-myc, bcl-2, and NPAT). We compared these cell lines with a primary T lymphoblast population with a limited life span from the same donor. Both T cell lines with extraordinary growth capacity showed telomere length stabilization, high telomerase activity and demonstrated wild-type pattern of pRb and p53 but strong p16(INK4a) protein expression. The growth inhibitory activity of p16(INK4a) seemed to be abrogated by enhanced expression of cyclin D2, cdk4, and c-myc in one T cell line and overexpression of cyclin E in the second T cell line.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call