Abstract

(1) Background: As the COVID-19 pandemic enters its fourth year, it continues to cause significant morbidity and mortality worldwide. Although various vaccines have been approved and the use of homologous or heterologous boost doses is widely promoted, the impact of vaccine antigen basis, forms, dosages, and administration routes on the duration and spectrum of vaccine-induced immunity against variants remains incompletely understood. (2) Methods: In this study, we investigated the effects of combining a full-length spike mRNA vaccine with a recombinant S1 protein vaccine, using intradermal/intramuscular, homologous/heterologous, and high/low dosage immunization strategies. (3) Results: Over a period of seven months, vaccination with a mutant recombinant S1 protein vaccine based on the full-length spike mRNA vaccine maintained a broadly stable humoral immunity against the wild-type strain, a partially attenuated but broader-spectrum immunity against variant strains, and a comparable level of cellular immunity across all tested strains. Furthermore, intradermal vaccination enhanced the heterologous boosting of the protein vaccine based on the mRNA vaccine. (4) Conclusions: This study provides valuable insights into optimizing vaccination strategies to address the ongoing challenges posed by emerging SARS-CoV-2 variants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.