Abstract
ABSTRACTA new tensile creep model that integrates the tensile strength at creep temperature is investigated for its generic applicability in predicting the long-term creep strengths from short-term creep test data for high Cr creep-resistant steels using creep and tensile strength data measured for a grade of 11Cr steel. The results show that, when the long-term creep strengths are specified by stresses producing the required minimum creep rate, they can be accurately predicted using short-term creep test data. However, when they are specified by stresses giving the required creep rupture time, using only short-term creep test data will lead to over-predictions. The microstructure evolution origin of such over-predictions is traced to the Z-phase precipitation during creep in creep-resistant steels with more than 9 wt.% Cr. The conventional concept on the relationship between creep test stress and creep mechanisms is also re-evaluated in light of the new results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.