Abstract

Purpose/Aim Rett (RTT) syndrome, a neurodevelopmental disorder, results from loss-of-function mutations in methyl-CpG-binding protein 2. We studied activity-dependent plasticity induced by sensory deprivation via whisker trimming in early symptomatic male mutant mice to assess neural rewiring capability. Methods One whisker was trimmed for 0-14 days and intrinsic optical imaging of the transient reduction of brain blood oxygenation resulting from neural activation by 1 second of wiggling of the whisker stump was compared to that of an untrimmed control whisker. Results Cortical evoked responses to wiggling a non-trimmed whisker were constant for 14 days, reduced for a trimmed whisker by 49.0 ± 4.3% in wild type (n = 14) but by only 22.7 ± 4.6% in mutant (n = 18, p = 0.001). Conclusion As the reduction in neural activation following sensory deprivation in whisker barrel cortex is known to be dependent upon evoked and basal neural activity, impairment of cortical re-wiring following whisker trimming provides a paradigm suitable to explore mechanisms underlying deficiencies in the establishment and maintenance of synapses in RTT, which can be potentially targeted by therapeutics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.