Abstract

Conductive hearing loss is a prevalent condition globally. It remains unclear whether conductive hearing loss that occurs during early development disrupts auditory peripheral systems. In this study, a mouse model of conductive auditory deprivation (CAD) was achieved using external auditory canal closure on postnatal day 12, which marks the onset of external ear canal opening. Short-term (2 weeks) and long-term (6 weeks) deprivations involving external ear canal closure were conducted. Mice were examined immediately, 4 weeks, and 8 weeks after deprivation. Short-term deprivation induced reversible auditory brainstem response (ABR) threshold and latencies of ABR wave I, whereas long-term deprivation caused irreversible ABR thresholds and latencies of ABR wave I. Complete recovery of ribbon synapses and latencies of ABR wave I was observed in the short-term group. In contrast, we observed irreversible ABR thresholds, latencies of ABR wave I, and quantity of ribbon synapses in the long-term deprivation group. Positive 8-hydroxy-2’-deoxyguanosine signals were noted in cochlear hair cells in the long-term group, suggesting that long-term auditory deprivation could disrupt auditory maturation via mitochondrial damage in cochlear hair cells. Conversely, no significant changes in cellular morphology were observed in cochlear hair cells and spiral ganglion cells in either short- or long-term groups. Collectively, our findings suggest that long-term conductive hearing deprivation during early stages of auditory development can cause significant and irreversible disruption that persists into adulthood.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.