Abstract

Long-term coherent integration (CI) can effectively improve the radar detection capability for high-speed targets. However, the range walk (RW) effect caused by high-speed motion significantly degrades the detection performance. To improve detection performance, this study proposes an improved algorithm based on the modified Radon inverse Fourier transform (denoted as IMRIFT). The proposed algorithm uses parameter searching for velocity estimation, designs a compensation function based on the relationship between velocity and distance walk and Doppler ambiguity terms, and performs CI based on the compensated signal. IMRIFT can achieve RW correction, avoid the blind-speed sidelobe (BSSL) effect caused by velocity mismatch, and improve detection performance, while ensuring low computational complexity. In addition, considering the relationship between energy concentration regions and bandwidth in the 2D frequency domain, a fast method based on IMIRFT is proposed, which can balance computational cost and detection capacity. Finally, a series of comparative experiments are conducted to demonstrate the effectiveness of the proposed algorithm and the fast method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.