Abstract
There are many controversies about the long-term prognosis of hydroxyapatite (HA)-coated implants. Failure may be related to compositional and structural changes of the coating occurring during implantation. Two retrieved and two unused HA-coated blade-type implants were examined by stereomicroscopy, secondary electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and electron probe microanalysis. The objective was to investigate the HA morphology, composition, and structure, and to characterize the changes that occurred in the retrieved implant coatings. Retrieved implants presented partial loss of the coating, especially at the apical and mesiodistal edges. Remaining HA was thick and flattened in the cervical and central areas and gradually thinner and rougher towards the apical and mesiodistal edges. Increase of Cl and Mg, decrease of OH, and X-ray diffraction peak broadening were found in the retrieved implant coatings, in comparison with the unused implants. Morphological changes of the retrieved implants seem to depend on stress values in the surrounding bone and on implant mobility. Compositional changes and increased amount of lattice imperfections appeared in the retrieved implant coatings, as a result of ion substitutions in the apatite lattice. However, the present study could not confirm the influence of these changes on implant failure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.