Abstract

Ice phenomena are a major component of the hydrological regime of east-central and northern European rivers. However, their occurrence disturbs inland water transportation, particularly affecting the major rivers of the Central European Plain that are part of Europe’s international waterways. The Oder is one of these rivers, and is located on the boundary between the much warmer and the much colder part of the temperate climatic zone. This makes the course of ice phenomena on the river difficult to predict. The main purpose of this work is to document and analyse the dynamic of changes occurring for over 60 years (1956–2015) in the ice phenomena of a river that demonstrates a transitional ice regime. It was found that the duration of all ice phenomena decreased (by up to 0.58 days·year−1) and so did the duration of ice cover (by up to 0.46 days·year−1). The rates and trends of the two parameters were, however, different in different parts of the lower stretch of the river. This fact is especially important in the context of climate changes whose characteristics include an increased incidence of extreme weather situations, both meteorological and hydrological. There was also found to be a strong correlation (R2 from 0.69 to 0.81) between the duration of ice phenomena and the mean air temperature in winter (December to February) and a much weaker correlation between the duration of ice phenomena and the NAO index (R2 from 0.42 to 0.48). Such a little correlation of ice phenomena with NAO is likely to result from the pollution of the Oder River (in particular in the second half of the twentieth century) and icebreaking operations on the river.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call